yucca: (Default)
[personal profile] yucca
Фейсбук все же иногда украшает жизнь. Вот мы тут ерундой занимаемся, а там доцент СПбГУ опроверг Кантора. New algorithm to demonstrate the calculator!

(no subject)

Date: 2016-08-25 11:15 am (UTC)
From: [identity profile] duchifat.livejournal.com
Я, дофантазировав, понял примерно так:
1. Вы сначала нумеруете все стандартные (рациональные и алгебраические) функции и их комбинации, доступные ЭВМ. Функция Sqrt(x) получает некий номер.
2. Потом вы по одной оси откладываете все рациональные чиала, по другой оси - список функций.
3. Затем вы заполняете квадрат результатом применения функций по списку к рациональным числам. Там в одной из клеточек будет и результат применения Sqrt(x) к 1/2.
4. Клеточки вы нумеруете натуральными числами.

В принципе, на этом можно и остановиться. :)

5. Одна из ваших функций будет функция возвращающая случайные числа, Random(x). Машина же как-то ее выполнят, образуя из сочетания (последовательного пименения) стандартных функций. :)
6. Неким образом можно показать, что любая клеточка в вашей таблице совпадает рано или поздно со одним из элементов в строке Random(x). Это следует неким образом из равнмомерности распределения случайных чисел. таким образом, вы перенумеровываете ваши клеточки, уже при помощи Random(x). Но это, собственно, не важно, поскольку пункта четыре достаточно.

Таким рассуждением вы показали, что вычислительная машина может опериривать любыми практически важными (с точки зрения вычисления на машине) числами без применения актуальных бесконечностей и множеств мощностью континуума. Поскольку, человек это тоже, в определенном смысле вычислительная машина, как и совокупность всех людей, то выходит множествио всех чисел, о которых человек может помыслить - счетное. Не то чтобы это была новость, но немного другой взгляд на старый вопрос.

Новизны по сути нет, хотя некоторая новизна может содержаться в пункте шесть, если он верен.

(no subject)

Date: 2016-08-25 09:15 pm (UTC)
From: [identity profile] scherkas.livejournal.com
в Вашем рассуждении, вы откладываете по одной оси рациональные числа (счетное множество), а по другой - какие-то не вполне понятные мне "рациональные функции", множество который предполагается счетным (??). Понятно, что комбинация их - тоже счетна.

Однако, неясно, какое отношение это упражнение имеет к (не)счетности множества ДЕЙСТВИТЕЛьНЫХ чисел, да собвственно, и функций ????
Тут у вас неявное предположение, что ВСЕ ДЕЙСТВИТЕЛЬНЫЕ числа - это результат применения неких "рациональных" функций к рациональным же числам. (иначе есть куча чисел, которые в Вашей таблице не появятся).

Понятно, что любое действительное число можно сколь угодно точне представить рациональным (а они - счетны). То есть, для практических целей - количество чисел - счетно. Я вам даже больше скажу - так как количество бит на число в компе ограничено, то количество чисел, вычисляемых на компе - не просто счетно, а даже конечно !
Page generated Jan. 28th, 2026 11:18 am
Powered by Dreamwidth Studios